¿Es conveniente que en la lucha entre la docena y la decena halla triunfado esta última?. Naturalmente, por las intensas ligas de la decena con los diez dedos, nuestras propias manos han sido y continúan siendo máquinas calculadoras naturales. Pero si no fuera por esto, entonces convendría, incondicionalmente, dar la preferencia al 12 antes que al 10. Es mucho más conveniente realizar los cálculos en el sistema duodecimal que en el decimal.
Esto se debe a que el número 10 es divisible entre 2 y 5, mientras que el 12 es divisible entre 2, 3, 4 y 6. En 10 hay, en total, dos divisores; en 12, cuatro. Las ventajas del sistema duodecimal se tornan claras si se considera que en este sistema un número que termina con cero, es múltiplo de 2, 3, 9 y 6: reflexiónese: ¡qué tan cómodo es dividir un número cuando precisamente 1/2, 1/3, 1/4 y 7/6 deben ser números enteros!
Si el número expresado en el sistema duodecimal termina con dos ceros, deberá ser divisible entre 144, y por consiguiente, también entre todos los multiplicadores de 144, es decir, entre la siguiente serie de números:
2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144.
Catorce divisores, en lugar de los ocho que tienen los números escritos en el sistema decimal, si terminan con dos ceros (2, 4, 5, 10, 20, 25, 50 y 100). En nuestro sistema solamente fracciones de la forma 1/2, 1/4, 1/5, 1/20 etc., se convierten en decimales finitos; en el sistema duodecimal se pueden escribir: sin denominador mucho más diversas fracciones y ante todo: 1/2, 1/3, 1/4, 1/6, 1/8, 1/9, 1/12, 1/16, 1/18, 1/24, 1/36, 1/48, 1/72, 1/144, las que respectivamente se representan así:
0.6: 0.4; 0.3: 0.2; 0.16; 0.14: 0.1; 0.09; 0.08; 0.06; 0.04: 0.03: 0.02; 0.01.
Por otra parte, sería un gran error pensar que la divisibilidad de un número puede depender del sistema de numeración en que esté representado. Si unas nueces contenidas en un saco, pueden ser separadas en 5 montones idénticos, entonces esta propiedad de ellas, naturalmente, no se modifica a causa de que nuestro número de nueces esté expresado en uno u otro sistema de numeración o dispuesto en un ábaco, o escrito con letras, o representado por cualquier otro método. Si el número escrito en el sistema duodecimal es divisible entre 6 o entre 72, entonces, al ser expresado en otro sistema de numeración, por ejemplo en el decimal, deberá tener los mismos divisores. La diferencia consiste únicamente en que, en el sistema duodecimal la divisibilidad entre 6 o entre 72 es fácil de descubrir (el número termina en uno o en dos ceros).
Ante tales ventajas del sistema duodecimal, no es entraño que entre los matemáticos se corriera la voz en favor de un traslado total a este sistema. Sin embargo, estamos ya demasiado acostumbrados al sistema decimal como para resolverse por tal sistema.El gran matemático francés Laplace emitió la siguiente opinión respecto a dicho problema: "La base de nuestro sistema de numeración no es divisible entre 3 ni entre 4, es decir, entre dos divisores muy empleados por su sencillez. La incorporación de dos nuevos símbolos (cifras) daría al sistema de numeración esta ventaja; pero tal innovación sería, sin duda, contraproducente. Perderíamos la utilidad que dio origen a nuestra aritmética que es, la posibilidad de calcular con los dedos de las manos".
Por el contrario, procedía, por uniformidad, pasar también a los decimales en la medición de los arcos, de los minutos y de los grados.
Dicha reforma se intentó realizar en Francia, pero no llegó a implantarse. No había otro, aparte de Laplace que fuera un ardiente partidario de esta reforma. Su célebre libro "Exposición de un sistema del mundo" sucesivamente realiza la subdivisión decimal de los ángulos; llama grado, no a la noventava, sino a la centésima parte de un ángulo recto, minuto a la centésima parte de un grado, etc. Inclusive, Laplace emitió su opinión sobre la subdivisión decimal de las horas y de los minutos. "La uniformidad del sistema de medidas, requiere que el día esté dividido en 100 horas, la hora en 100 minutos, el minuto en 100 segundos" escribió el eminente geómetra francés.
Se ve, por consiguiente, que la docena tiene por sí misma, una larga historia, y que el número 12. no sin fundamento se encuentra en la galería de las maravillas numéricas. Por el contrario su contiguo, el número 13, figura aquí no porque sea notable, sino más bien por no serlo, aunque precisamente se emplea por una gloria sombría: ¿no es extraordinario que no habiendo nada que distinga al número, pudiera éste llegar a ser "peligrosa" pera las gentes supersticiosas?
La forma en que fue propagada esta superstición (que se originó en la antigua Babilonia) es evidente por el hecho de que en la época del régimen zarista, en el dispositivo del tranvía eléctrico en Petersburgo no se decidieron a introducir la ruta número 13, omitiéndola y pasando a la número 14. Las autoridades pensaban que el público no querría viajar en vagones con tal "siniestro" número. Es curioso que en Petersburgo los alojamientos que atendían 13 cuartos, estuvieran solitarios... En los hoteles, generalmente no existía la habitación número 13. Para la lucha contra esta superstición numérica, sin fundamento, en algunas partes de Occidente (por ejemplo, en Inglaterra) se han constituido inclusive "Clubes del número 13" especiales.
No hay comentarios:
Publicar un comentario